Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Info

https://github.com/NVlabs/Sana/tree/main

Code Block
prompt = 'a cyberpunk cat with a neon sign that says "Sana"'
image = pipe(
    prompt=prompt,
    guidance_scale=5.0,
    pag_scale=2.0,
    num_inference_steps=20,
    generator=torch.Generator(device="cuda").manual_seed(42),
)[0]
image[0].save('sana.png')
Info
CFG (Guidance scale) seems to be ignored, and attempting to use different flow match samplers also give the same result


Test

Prompt 1: photorealistic girl in bookshop choosing the book in romantic stories shelf. smiling

Parameters: Pipeline: SanaPipeline| Steps: 48| Size: 1024x1024| Sampler: DPM2 FlowMatch| Seed: 2754978897| CFG scale: 6| App: SD.Next| Version: 9700cc7| Operations: txt2img| Model: SANA1.5_4.8B_1024px_diffusers| CHI: True

Execution: Time: 5m 26.09s | total 326.12 pipeline 320.52 decode 5.53 | GPU 15602 MB 12% | RAM 4.25 GB 3%


Prompt 2: Create a close-up photograph of a woman's face and hand, with her hand raised to her chin. She is wearing a white blazer and has a gold ring on her finger. Her nails are neatly manicured and her hair is pulled back into a low bun. She is smiling and has a radiant expression on her face. The background is a plain light gray color. The overall mood of the photo is elegant and sophisticated. The photo should have a soft, natural light and a slight warmth to it. The woman's hair is dark brown and pulled back into a low bun, with a few loose strands framing her face.

...

Prompt 3: Generate a photo of a woman's legs, with her feet crossed and wearing white high-heeled shoes with ribbons tied around her ankles. The shoes should have a pointed toe and a stiletto heel. The woman's legs should be smooth and tanned, with a slight sheen to them. The background should be a light gray color. The photo should be taken from a low angle, looking up at the woman's legs. The ribbons should be tied in a bow shape around the ankles. The shoes should have a red sole. The woman's legs should be slightly bent at the knee.

Parameters: Pipeline: SanaPipeline| Steps: 18| Size: 1024x1024| Sampler: DPM2 FlowMatch| Seed: 2754978897| CFG scale: 6| App: SD.Next| Version: 9700cc7| Operations: txt2img| Model: SANA1.5_4.8B_1024px_diffusers| CHI: True

Execution: Time: 2m 2.34s | total 122.37 pipeline 117.51 decode 4.80 | GPU 15602 MB 12% | RAM 4.19 GB 3%



Bookshopface and handshoes with ribbons
2

Image Added

Image Added

Image Added

4

Image Added

Image Added

Image Added

6

Image Added

Image Added

Image Added

8

Image Added

Image Added

Image Added

10

Image Added

Image Added

Image Added

12

Image Added

Image Added

Image Added

14

Image Added

Image Added

Image Added

16

Image Added

Image Added

Image Added

18

Image Added

Image Added

Image Added

20

Image Added

Image Added

Image Added

24

Image Added

Image Added

Image Added

28

Image Added

Image Added

Image Added

32

Image Added

Image Added

Image Added

48

Image Added

Image Added

Image Added

64

Image Added

Image Added

Image Added

100

Image Added

Image Added

Image Added

System

Code Block
app: sdnext.git updated: 2025-07-07 hash: 9700cc76 url: https://github.com/vladmandic/sdnext.git/tree/dev
arch: x86_64 cpu: x86_64 system: Linux release: 6.11.0-29-generic
python: 3.12.3 Torch 2.7.1+xpu
device: Intel(R) Arc(TM) Graphics (1) ipex: 
ram: free:122.13 used:3.2 total:125.33
xformers: diffusers: 0.35.0.dev0 transformers: 4.53.1
active: xpu dtype: torch.bfloat16 vae: torch.bfloat16 unet: torch.bfloat16

Model

Code Block
Model: Diffusers/Efficient-Large-Model/SANA1.5_4.8B_1024px_diffusers
Type: sana
Class: SanaPipeline
Size: 0 bytes
Modified: 2025-07-07 16:03:42


Module

Class

Device

DType

Params

Modules

Config

tokenizer

GemmaTokenizerFast

None

None

0

0

None

text_encoder

Gemma2Model

xpu:0

torch.bfloat16

2614341888

395

Gemma2Config { "architectures": [ "Gemma2Model" ], "attention_bias": false, "attention_dropout": 0.0, "attn_logit_softcapping": 50.0, "bos_token_id": 2, "cache_implementation": "hybrid", "eos_token_id": [ 1, 107 ], "final_logit_softcapping": 30.0, "head_dim": 256, "hidden_act": "gelu_pytorch_tanh", "hidden_activation": "gelu_pytorch_tanh", "hidden_size": 2304, "initializer_range": 0.02, "intermediate_size": 9216, "layer_types": [ "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention", "sliding_attention", "full_attention" ], "max_position_embeddings": 8192, "model_type": "gemma2", "num_attention_heads": 8, "num_hidden_layers": 26, "num_key_value_heads": 4, "pad_token_id": 0, "query_pre_attn_scalar": 256, "rms_norm_eps": 1e-06, "rope_theta": 10000.0, "sliding_window": 4096, "torch_dtype": "bfloat16", "transformers_version": "4.53.1", "use_cache": true, "vocab_size": 256000 }

vae

AutoencoderDC

xpu:0

torch.bfloat16

312250275

442

FrozenDict({'in_channels': 3, 'latent_channels': 32, 'attention_head_dim': 32, 'encoder_block_types': ['ResBlock', 'ResBlock', 'ResBlock', 'EfficientViTBlock', 'EfficientViTBlock', 'EfficientViTBlock'], 'decoder_block_types': ['ResBlock', 'ResBlock', 'ResBlock', 'EfficientViTBlock', 'EfficientViTBlock', 'EfficientViTBlock'], 'encoder_block_out_channels': [128, 256, 512, 512, 1024, 1024], 'decoder_block_out_channels': [128, 256, 512, 512, 1024, 1024], 'encoder_layers_per_block': [2, 2, 2, 3, 3, 3], 'decoder_layers_per_block': [3, 3, 3, 3, 3, 3], 'encoder_qkv_multiscales': [[], [], [], [5], [5], [5]], 'decoder_qkv_multiscales': [[], [], [], [5], [5], [5]], 'upsample_block_type': 'interpolate', 'downsample_block_type': 'Conv', 'decoder_norm_types': 'rms_norm', 'decoder_act_fns': 'silu', 'scaling_factor': 0.41407, '_class_name': 'AutoencoderDC', '_diffusers_version': '0.33.0.dev0', '_name_or_path': '/mnt/models/Diffusers/models--Efficient-Large-Model--SANA1.5_4.8B_1024px_diffusers/snapshots/231ba75b89215c82dc070562d00efda1801171dc/vae'})

transformer

SanaTransformer2DModel

xpu:0

torch.bfloat16

4721825952

1581

FrozenDict({'in_channels': 32, 'out_channels': 32, 'num_attention_heads': 70, 'attention_head_dim': 32, 'num_layers': 60, 'num_cross_attention_heads': 20, 'cross_attention_head_dim': 112, 'cross_attention_dim': 2240, 'caption_channels': 2304, 'mlp_ratio': 2.5, 'dropout': 0.0, 'attention_bias': False, 'sample_size': 32, 'patch_size': 1, 'norm_elementwise_affine': False, 'norm_eps': 1e-06, 'interpolation_scale': None, 'guidance_embeds': False, 'guidance_embeds_scale': 0.1, 'qk_norm': 'rms_norm_across_heads', 'timestep_scale': 1.0, '_use_default_values': ['timestep_scale', 'guidance_embeds_scale'], '_class_name': 'SanaTransformer2DModel', '_diffusers_version': '0.33.0.dev0', '_name_or_path': '/mnt/models/Diffusers/models--Efficient-Large-Model--SANA1.5_4.8B_1024px_diffusers/snapshots/231ba75b89215c82dc070562d00efda1801171dc/transformer'})

scheduler

DPMSolverMultistepScheduler

None

None

0

0

FrozenDict({'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'trained_betas': None, 'solver_order': 2, 'prediction_type': 'flow_prediction', 'thresholding': False, 'dynamic_thresholding_ratio': 0.995, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lower_order_final': True, 'euler_at_final': False, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'use_flow_sigmas': True, 'flow_shift': 3.0, 'final_sigmas_type': 'zero', 'lambda_min_clipped': -inf, 'variance_type': None, 'timestep_spacing': 'linspace', 'steps_offset': 0, 'rescale_betas_zero_snr': False, '_class_name': 'DPMSolverMultistepScheduler', '_diffusers_version': '0.33.0.dev0'})

_name_or_path

str

None

None

0

0

None

_class_name

str

None

None

0

0

None

_diffusers_version

str

None

None

0

0

None