Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
frameworkBackendDeviceSingleHalfQuant.Results
TensorFlow Lite
CPU
Intel(R) N150
601612430https://browser.geekbench.com/ai/v1/247221
/claim?key=748782
ONNX
CPU
Intel(R) N150
7552951449https://browser.geekbench.com/ai/v1/247226
OpenVINO
CPU
Intel(R) N150
9289411902https://browser.geekbench.com/ai/v1/247228
Workload (TF Lite)AccuracyScoreWorkload (ONNX)AccuracyScoreWorkload (OpenVINO)AccuracyScore
Image Classification (SP)100%406
75.5 IPS
 
Image Classification (SP)100%522
97.0 IPS
Image Classification (SP)100%553
102.8 IPS
Image Classification (HP)100%411
76.5
IPS 
IPSImage Classification (HP)100%97
18.1 IPS
Image Classification (HP)100%554
103.0 IPS
Image Classification (Q)99%275
51.2 IPS
 
Image Classification (Q)97%1131
211.0 IPS
Image Classification (Q)100%1165
216.7 IPS
Image Segmentation (SP)100%517
8.38
IPS 
IPSImage Segmentation (SP)100%445
7.22 IPS
Image Segmentation (SP)100%655
10.6 IPS
Image Segmentation (HP)100%515
8.35
IPS 
IPSImage Segmentation (HP)100%146
2.37 IPS
Image Segmentation (HP)100%667
10.8 IPS
Image Segmentation (Q)98%332
5.40 IPS
 
Image Segmentation (Q)99%954
15.5 IPS
Image Segmentation (Q)99%1235
20.0 IPS
Pose Estimation (SP)100%632
0.74
IPS 
IPSPose Estimation (SP)100%997
1.16 IPS
Pose Estimation (SP)100%948
1.11 IPS
Pose Estimation (HP)100%649
0.76 IPS
Pose Estimation (HP)100%753
0.88 IPS
 
Pose Estimation (HP)100%957
1.12 IPS
Pose Estimation (Q)96%611
0.72 IPS
 
Pose Estimation (Q)94%2459
2.88 IPS
Pose Estimation (Q)96%2538
2.97 IPS
Object Detection (SP)100%369
29.3
IPS 
IPSObject Detection (SP)100%489
38.8 IPS
Object Detection (SP)100%497
39.5 IPS
Object Detection (HP)100%378
30.0 IPS
Object Detection (HP)100%122
9.68 IPS
 
Object Detection (HP)100%525
41.7 IPS
Object Detection (Q)85%286
23.0 IPS
 
Object Detection (Q)86%1114
89.5 IPS
Object Detection (Q)88%1168
93.6 IPS
Face Detection (SP)100%771
9.16 IPS
 
Face Detection (SP)100%1086
12.9 IPS
Face Detection (SP) 100%1619
19.2 IPS
Face Detection (HP)100%870
10.3 IPS
 
Face Detection (HP)100%207
2.46 IPS
Face Detection (HP) 100%1632
19.4 IPS
Face Detection (Q)97%719
8.57 IPS
 
Face Detection (Q)97%2934
35.0 IPS
Face Detection (Q) 100%2980
35.4 IPS
Depth Estimation (SP)100%724
5.58 IPS
Depth Estimation (SP)100%1312
10.1 IPS
 
Depth Estimation (SP)100%1241
9.56 IPS
Depth Estimation (HP)99%747
5.76 IPS
 
Depth Estimation (HP)99%462
3.56 IPS
Depth Estimation (HP)99%1236
9.52 IPS
Depth Estimation (Q)63%549
5.15 IPS
 
Depth Estimation (Q)78%2596
20.7 IPS
Depth Estimation (Q)89%3103
24.1 IPS
Style Transfer (SP)100%1256
1.61 IPS
 
Style Transfer (SP)100%2473
3.18 IPS
Style Transfer (SP)100%2786
3.58 IPS
Style Transfer (HP)100%1264
1.63 IPS
Style Transfer (HP)100%1993
2.56 IPS
 
Style Transfer (HP)100%2854
3.67 IPS
Style Transfer (Q)98%1454
1.87 IPS
 
Style Transfer (Q)98%4651
6.00 IPS
Style Transfer (Q)98%7229
9.32 IPS
Image Super-Resolution (SP)100%362
13.4 IPS
 
Image Super-Resolution (SP)100%588
21.7 IPS
Image Super-Resolution (SP)100%599
22.1 IPS
Image Super-Resolution (HP)100%338
12.5 IPS
 
Image Super-Resolution (HP)100%430
15.9 IPS
Image Super-Resolution (HP)100%606
22.4 IPS
Image Super-Resolution (Q)97%357
13.2 IPS
 
Image Super-Resolution (Q)99%876
32.4 IPS
Image Super-Resolution (Q)99%1505
55.7 IPS
Text Classification (SP)100%612
816.3 IPS
 
Text Classification (SP)100%297
397.0 IPS
Text Classification (SP)100%704
939.7 IPS
Text Classification (HP)100%614
819.4 IPS
 
Text Classification (HP)100%180
240.0 IPS
Text Classification (HP)100%702
937.4 IPS
Text Classification (Q)92%266
356.9 IPS
 
Text Classification (Q)97%412
552.4 IPS
Text Classification (Q)92%1199
1.61 KIPS
Machine Translation (SP)100%819
14.1 IPS
 
Machine Translation (SP)100%875
15.1 IPS
Machine Translation (SP)100%1184
20.4 IPS
Machine Translation (HP)100%833
14.3 IPS
 
Machine Translation (HP)100%267
4.60 IPS
Machine Translation (HP)100%1210
20.8 IPS
Machine Translation (Q)58%253
5.95 IPS
 
Machine Translation (Q)65%1085
21.8 IPS
Machine Translation (Q)100%1206
20.8 IPS

Install

Code Block
# OpenVino
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
echo "deb https://apt.repos.intel.com/openvino/2025 ubuntu24 main" | sudo tee /etc/apt/sources.list.d/intel-openvino-2025.list
apt update
apt-cache search openvino
apt install openvino
python3 /usr/share/openvino/samples/python/hello_query_device/hello_query_device.py

#Geekbench
mkdir Geekbench
cd Geekbench
wget https://cdn.geekbench.com/GeekbenchAI-1.3.0-Linux.tar.gz
tar xvf GeekbenchAI-1.3.0-Linux.tar.gz
cd GeekbenchAI-1.3.0-Linux/


Check Available frameworks

Ubuntu 24.04

Code Block
root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --ai-list
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Geekbench AI requires an active internet connection and automatically uploads
benchmark results to the Geekbench Browser.

Framework          | Backend       | Device
 1 TensorFlow Lite |  1 CPU        |  0 Intel(R) N150
 3 ONNX            |  1 CPU        |  0 Intel(R) N150
 4 OpenVINO        |  1 CPU        |  0 Intel(R) N150

Ubuntu 25.04

Code Block
root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --ai-list
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Geekbench AI requires an active internet connection and automatically uploads
benchmark results to the Geekbench Browser.

Framework          | Backend       | Device
 1 TensorFlow Lite |  1 CPU        |  0 Intel(R) N150
 3 ONNX            |  1 CPU        |  0 Intel(R) N150
 4 OpenVINO        |  1 CPU        |  0 Intel(R) N150
 4 OpenVINO        |  2 GPU        |  1 Intel(R) Graphics (iGPU)



help

Code Block
root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --help
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Usage:

  ./banff [ options ]

Options:

  -h, --help                  print this message

AI Benchmark Options:

  --ai                        run the AI benchmark
  --ai-framework [ID]         use AI framework ID
  --ai-backend [ID]           use AI backend ID
  --ai-device [ID]            use AI device ID
  --ai-list                   list available AI settings

If no options are given, the default action is to run the inference benchmark.

...