Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Test 1 - Different seed variations

Prompt: photorealistic girl in bookshop choosing the book in romantic stories shelf. smiling

Parameters: Steps: 50| Size: 1024x1024| Seed: 1972235878| CFG scale: 6| App: SD.Next| Version: 7ccb9d3| Pipeline: StableDiffusionXLPipeline| Operations: txt2img| Model: sd_xl_base_1.0| Model hash: 31e35c80fc

Time: 4m 15.88s | total 494.75 pipeline 249.02 preview 238.10 decode 5.90 move 0.69 prompt 0.61 gc 0.57 post 0.27 | GPU 9470 MB 7% | RAM 2.84 GB 2%

CFG 6, 50 STEPS

28998687402561095516397770093610997276091972235878

bookshop girl
768px

1024

Image Added

Image Added

Image Added

Image Added

Image Added

face and hand

768px

legs and shoes

768px



...

Time: 46.40s | total 87.23 pipeline 42.72 preview 39.91 decode 2.54 move 0.89 prompt 0.88 gc 0.50 | GPU 8878 MB 7% | RAM 2.86 GB 2%



16203250

CFG4

Image Added

Image Added

Image Added

Image Added

CFG6

Image Added

Image Added

Image Added

Image Added

CFG8

Image Added

Image Added

Image Added

Image Added

CFG10

Image Added

Image Added

Image Added

Image Added

CFG12

Image Added

Image Added

Image Added

Image Added

CFG14

Image Added

Image Added

Image Added

Image Added


System info


Code Block
app: sdnext.git updated: 2025-07-25 hash: 0b8001c0 url: https://github.com/vladmandic/sdnext.git/tree/dev
arch: x86_64 cpu: x86_64 system: Linux release: 6.14.0-24-generic 
python: 3.12.3 Torch: 2.7.1+xpu
device: Intel(R) Arc(TM) Graphics (1) ipex: 
ram: free:122.5 used:2.83 total:125.33
xformers:  diffusers: 0.35.0.dev0 transformers: 4.53.2
active: xpu dtype: torch.bfloat16 vae: torch.bfloat16 unet: torch.bfloat16
base: sd_xl_base_1.0 [31e35c80fc] refiner: none vae: none te: none unet: none

...

Code Block
Model: sd_xl_base_1.0
Type: sdxl
Class: StableDiffusionXLPipeline
Size: 6 938 078 334 bytes
Modified: 2025-07-15 13:47:33


ModuleClassDeviceDTypeParamsModulesConfig

vae

AutoencoderKL

xpu:0

torch.bfloat16

83653863

243

FrozenDict({'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'], 'block_out_channels': [128, 256, 512, 512], 'layers_per_block': 2, 'act_fn': 'silu', 'latent_channels': 4, 'norm_num_groups': 32, 'sample_size': 1024, 'scaling_factor': 0.13025, 'shift_factor': None, 'latents_mean': None, 'latents_std': None, 'force_upcast': False, 'use_quant_conv': True, 'use_post_quant_conv': True, 'mid_block_add_attention': True, '_use_default_values': ['mid_block_add_attention', 'latents_std', 'use_quant_conv', 'use_post_quant_conv', 'latents_mean', 'shift_factor'], '_class_name': 'AutoencoderKL', '_diffusers_version': '0.20.0.dev0', '_name_or_path': '../sdxl-vae/'})

text_encoder

CLIPTextModel

xpu:0

torch.bfloat16

123060480

152

CLIPTextConfig { "architectures": [ "CLIPTextModel" ], "attention_dropout": 0.0, "bos_token_id": 0, "dropout": 0.0, "eos_token_id": 2, "hidden_act": "quick_gelu", "hidden_size": 768, "initializer_factor": 1.0, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-05, "max_position_embeddings": 77, "model_type": "clip_text_model", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 1, "projection_dim": 768, "torch_dtype": "float16", "transformers_version": "4.53.2", "vocab_size": 49408 }

text_encoder_2

CLIPTextModelWithProjection

xpu:0

torch.bfloat16

694659840

393

CLIPTextConfig { "architectures": [ "CLIPTextModelWithProjection" ], "attention_dropout": 0.0, "bos_token_id": 0, "dropout": 0.0, "eos_token_id": 2, "hidden_act": "gelu", "hidden_size": 1280, "initializer_factor": 1.0, "initializer_range": 0.02, "intermediate_size": 5120, "layer_norm_eps": 1e-05, "max_position_embeddings": 77, "model_type": "clip_text_model", "num_attention_heads": 20, "num_hidden_layers": 32, "pad_token_id": 1, "projection_dim": 1280, "torch_dtype": "float16", "transformers_version": "4.53.2", "vocab_size": 49408 }

tokenizer

CLIPTokenizer

None

None

0

0

None

tokenizer_2

CLIPTokenizer

None

None

0

0

None

unet

UNet2DConditionModel

xpu:0

torch.bfloat16

2567463684

1930

FrozenDict({'sample_size': 128, 'in_channels': 4, 'out_channels': 4, 'center_input_sample': False,

scheduler

EulerDiscreteScheduler

None

None

0

0

FrozenDict({'num_train_timesteps': 1000, 'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear', 'trained_betas': None, 'prediction_type': 'epsilon', 'interpolation_type': 'linear', 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'sigma_min': None, 'sigma_max': None, 'timestep_spacing': 'leading', 'timestep_type': 'discrete', 'steps_offset': 1, 'rescale_betas_zero_snr': False, 'final_sigmas_type': 'zero', '_use_default_values': ['use_exponential_sigmas', 'timestep_type', 'sigma_min', 'final_sigmas_type', 'use_beta_sigmas', 'sigma_max', 'rescale_betas_zero_snr'], '_class_name': 'EulerDiscreteScheduler', '_diffusers_version': '0.19.0.dev0', 'clip_sample': False, 'sample_max_value': 1.0, 'set_alpha_to_one': False, 'skip_prk_steps': True})

image_encoder

NoneType

None

None

0

0

None

feature_extractor

NoneType

None

None

0

0

None

force_zeros_for_empty_prompt

bool

None

None

0

0

None

_class_name

str

None

None

0

0

None

_diffusers_version

str

None

None

0

0

None


Code Block
{
modelspec.sai_model_spec: "1.0.0",
modelspec.architecture: "stable-diffusion-xl-v1-base",
modelspec.implementation: "https://github.com/Stability-AI/generative-models",
modelspec.title: "Stable Diffusion XL 1.0 Base",
modelspec.author: "StabilityAI",
modelspec.description: "SDXL 1.0 Base Model, compositional expert. SDXL, the most advanced development in the Stable Diffusion text-to-image suite of models. SDXL produces massively improved image and composition detail over its predecessors. The ability to generate hyper-realistic creations for films, television, music, and instructional videos, as well as offering advancements for design and industrial use, places SDXL at the forefront of real world applications for AI imagery.",
modelspec.date: "2023-07-26",
modelspec.resolution: "1024x1024",
modelspec.prediction_type: "epsilon",
modelspec.license: "CreativeML Open RAIL++-M License",
modelspec.thumbnail: "data",
modelspec.hash_sha256: "0xd7a9105a900fd52748f20725fe52fe52b507fd36bee4fc107b1550a26e6ee1d7"
}

...