You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

frameworkBackendDeviceSingleHalfQuant.Results
TensorFlow Lite
CPU
Intel(R) N150
601612430https://browser.geekbench.com/ai/v1/247221
ONNX
CPU
Intel(R) N150
7552951449https://browser.geekbench.com/ai/v1/247226
OpenVINO
CPU
Intel(R) N150




Workload (TF Lite)AccuracyScoreWorkload (ONNX)AccuracyScore


Image Classification (SP)100%406
75.5 IPS
Image Classification (SP)100%522
97.0 IPS

 


Image Classification (HP)100%411
76.5 IPS
Image Classification (HP)100%97
18.1 IPS

 


Image Classification (Q)99%275
51.2 IPS
Image Classification (Q)97%1131
211.0 IPS

 


Image Segmentation (SP)100%517
8.38 IPS
Image Segmentation (SP)100%445
7.22 IPS

 


Image Segmentation (HP)100%515
8.35 IPS
Image Segmentation (HP)100%146
2.37 IPS

 


Image Segmentation (Q)98%332
5.40 IPS
Image Segmentation (Q)99%954
15.5 IPS

 


Pose Estimation (SP)100%632
0.74 IPS
Pose Estimation (SP)100%997
1.16 IPS

 


Pose Estimation (HP)100%649
0.76 IPS
Pose Estimation (HP)100%753
0.88 IPS

 


Pose Estimation (Q)96%611
0.72 IPS
Pose Estimation (Q)94%2459
2.88 IPS

 


Object Detection (SP)100%369
29.3 IPS
Object Detection (SP)100%489
38.8 IPS

 


Object Detection (HP)100%378
30.0 IPS
Object Detection (HP)100%122
9.68 IPS

 


Object Detection (Q)85%286
23.0 IPS
Object Detection (Q)86%1114
89.5 IPS

 


Face Detection (SP)100%771
9.16 IPS
Face Detection (SP)100%1086
12.9 IPS

 


Face Detection (HP)100%870
10.3 IPS
Face Detection (HP)100%207
2.46 IPS

 


Face Detection (Q)97%719
8.57 IPS
Face Detection (Q)97%2934
35.0 IPS

 


Depth Estimation (SP)100%724
5.58 IPS
Depth Estimation (SP)100%1312
10.1 IPS

 


Depth Estimation (HP)99%747
5.76 IPS
Depth Estimation (HP)99%462
3.56 IPS

 


Depth Estimation (Q)63%549
5.15 IPS
Depth Estimation (Q)78%2596
20.7 IPS

 


Style Transfer (SP)100%1256
1.61 IPS
Style Transfer (SP)100%2473
3.18 IPS

 


Style Transfer (HP)100%1264
1.63 IPS
Style Transfer (HP)100%1993
2.56 IPS

 


Style Transfer (Q)98%1454
1.87 IPS
Style Transfer (Q)98%4651
6.00 IPS

 


Image Super-Resolution (SP)100%362
13.4 IPS
Image Super-Resolution (SP)100%588
21.7 IPS

 


Image Super-Resolution (HP)100%338
12.5 IPS
Image Super-Resolution (HP)100%430
15.9 IPS

 


Image Super-Resolution (Q)97%357
13.2 IPS
Image Super-Resolution (Q)99%876
32.4 IPS

 


Text Classification (SP)100%612
816.3 IPS
Text Classification (SP)100%297
397.0 IPS

 


Text Classification (HP)100%614
819.4 IPS
Text Classification (HP)100%180
240.0 IPS

 


Text Classification (Q)92%266
356.9 IPS
Text Classification (Q)97%412
552.4 IPS

 


Machine Translation (SP)100%819
14.1 IPS
Machine Translation (SP)100%875
15.1 IPS

 


Machine Translation (HP)100%833
14.3 IPS
Machine Translation (HP)100%267
4.60 IPS

 


Machine Translation (Q)58%253
5.95 IPS
Machine Translation (Q)65%1085
21.8 IPS

 


Install

# OpenVino
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
echo "deb https://apt.repos.intel.com/openvino/2025 ubuntu24 main" | sudo tee /etc/apt/sources.list.d/intel-openvino-2025.list
apt update
apt-cache search openvino
apt install openvino
python3 /usr/share/openvino/samples/python/hello_query_device/hello_query_device.py

#Geekbench
mkdir Geekbench
cd Geekbench
wget https://cdn.geekbench.com/GeekbenchAI-1.3.0-Linux.tar.gz
tar xvf GeekbenchAI-1.3.0-Linux.tar.gz
cd GeekbenchAI-1.3.0-Linux/


Check Available frameworks

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --ai-list
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Geekbench AI requires an active internet connection and automatically uploads
benchmark results to the Geekbench Browser.

Framework          | Backend       | Device
 1 TensorFlow Lite |  1 CPU        |  0 Intel(R) N150
 3 ONNX            |  1 CPU        |  0 Intel(R) N150
 4 OpenVINO        |  1 CPU        |  0 Intel(R) N150


help

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --help
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Usage:

  ./banff [ options ]

Options:

  -h, --help                  print this message

AI Benchmark Options:

  --ai                        run the AI benchmark
  --ai-framework [ID]         use AI framework ID
  --ai-backend [ID]           use AI backend ID
  --ai-device [ID]            use AI device ID
  --ai-list                   list available AI settings

If no options are given, the default action is to run the inference benchmark.

example run

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --ai-framework 1
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Geekbench AI requires an active internet connection and automatically uploads
benchmark results to the Geekbench Browser.

AI Information
  Framework                     TensorFlow Lite
  Backend                       CPU
  Device                        Intel(R) N150

System Information
  Operating System              Ubuntu 24.04.2 LTS
  Model                         GMKtec NucBoxG9
  Motherboard                   GMKtec GMKtec
  BIOS                          American Megatrends International, LLC. 5.27

CPU Information
  Name                          Intel(R) N150
  Topology                      1 Processor, 4 Cores
  Identifier                    GenuineIntel Family 6 Model 190 Stepping 0
  Base Frequency                3.60 GHz

Memory Information
  Size                          11.4 GB

  Running Image Classification (SP)
INFO: Initialized TensorFlow Lite runtime.
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Classification (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Classification (Q)
  Running Image Segmentation (SP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Segmentation (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Segmentation (Q)
  Running Pose Estimation (SP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Pose Estimation (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Pose Estimation (Q)
...


  • No labels