frameworkBackendDeviceSingleHalfQuant.Results
TensorFlow Lite
CPU
Intel(R) N150
601612430https://browser.geekbench.com/ai/v1/247221/claim?key=748782
ONNX
CPU
Intel(R) N150




OpenVINO
CPU
Intel(R) N150




WorkloadAccuracyScore





Image Classification (SP)100%406
75.5 IPS

 





Image Classification (HP)100%411
76.5 IPS

 





Image Classification (Q)99%275
51.2 IPS

 





Image Segmentation (SP)100%517
8.38 IPS

 





Image Segmentation (HP)100%515
8.35 IPS

 





Image Segmentation (Q)98%332
5.40 IPS

 





Pose Estimation (SP)100%632
0.74 IPS

 





Pose Estimation (HP)100%649
0.76 IPS

 





Pose Estimation (Q)96%611
0.72 IPS

 





Object Detection (SP)100%369
29.3 IPS

 





Object Detection (HP)100%378
30.0 IPS

 





Object Detection (Q)85%286
23.0 IPS

 





Face Detection (SP)100%771
9.16 IPS

 





Face Detection (HP)100%870
10.3 IPS

 





Face Detection (Q)97%719
8.57 IPS

 





Depth Estimation (SP)100%724
5.58 IPS

 





Depth Estimation (HP)99%747
5.76 IPS

 





Depth Estimation (Q)63%549
5.15 IPS

 





Style Transfer (SP)100%1256
1.61 IPS

 





Style Transfer (HP)100%1264
1.63 IPS

 





Style Transfer (Q)98%1454
1.87 IPS

 





Image Super-Resolution (SP)100%362
13.4 IPS

 





Image Super-Resolution (HP)100%338
12.5 IPS

 





Image Super-Resolution (Q)97%357
13.2 IPS

 





Text Classification (SP)100%612
816.3 IPS

 





Text Classification (HP)100%614
819.4 IPS

 





Text Classification (Q)92%266
356.9 IPS

 





Machine Translation (SP)100%819
14.1 IPS

 





Machine Translation (HP)100%833
14.3 IPS

 





Machine Translation (Q)58%253
5.95 IPS

 





Install


Check Available frameworks

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --ai-list
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Geekbench AI requires an active internet connection and automatically uploads
benchmark results to the Geekbench Browser.

Framework          | Backend       | Device
 1 TensorFlow Lite |  1 CPU        |  0 Intel(R) N150
 3 ONNX            |  1 CPU        |  0 Intel(R) N150
 4 OpenVINO        |  1 CPU        |  0 Intel(R) N150


help

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --help
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Usage:

  ./banff [ options ]

Options:

  -h, --help                  print this message

AI Benchmark Options:

  --ai                        run the AI benchmark
  --ai-framework [ID]         use AI framework ID
  --ai-backend [ID]           use AI backend ID
  --ai-device [ID]            use AI device ID
  --ai-list                   list available AI settings

If no options are given, the default action is to run the inference benchmark.

example run

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --ai-framework 1
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Geekbench AI requires an active internet connection and automatically uploads
benchmark results to the Geekbench Browser.

AI Information
  Framework                     TensorFlow Lite
  Backend                       CPU
  Device                        Intel(R) N150

System Information
  Operating System              Ubuntu 24.04.2 LTS
  Model                         GMKtec NucBoxG9
  Motherboard                   GMKtec GMKtec
  BIOS                          American Megatrends International, LLC. 5.27

CPU Information
  Name                          Intel(R) N150
  Topology                      1 Processor, 4 Cores
  Identifier                    GenuineIntel Family 6 Model 190 Stepping 0
  Base Frequency                3.60 GHz

Memory Information
  Size                          11.4 GB

  Running Image Classification (SP)
INFO: Initialized TensorFlow Lite runtime.
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Classification (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Classification (Q)
  Running Image Segmentation (SP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Segmentation (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Segmentation (Q)
  Running Pose Estimation (SP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Pose Estimation (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Pose Estimation (Q)
...