You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 6 Current »

frameworkBackendDeviceSingleHalfQuant.Results
TensorFlow Lite
CPU
Intel(R) N150
601612430https://browser.geekbench.com/ai/v1/247221
ONNX
CPU
Intel(R) N150
7552951449https://browser.geekbench.com/ai/v1/247226
OpenVINO
CPU
Intel(R) N150
9289411902https://browser.geekbench.com/ai/v1/247228
Workload (TF Lite)AccuracyScoreWorkload (ONNX)AccuracyScoreWorkload (OpenVINO)AccuracyScore
Image Classification (SP)100%406
75.5 IPS
Image Classification (SP)100%522
97.0 IPS
Image Classification (SP) 100%553
102.8 IPS
Image Classification (HP)100%411
76.5 IPS
Image Classification (HP)100%97
18.1 IPS
Image Classification (HP) 100%554
103.0 IPS
Image Classification (Q)99%275
51.2 IPS
Image Classification (Q)97%1131
211.0 IPS
Image Classification (Q) 100%1165
216.7 IPS
Image Segmentation (SP)100%517
8.38 IPS
Image Segmentation (SP)100%445
7.22 IPS
Image Segmentation (SP) 100%655
10.6 IPS
Image Segmentation (HP)100%515
8.35 IPS
Image Segmentation (HP)100%146
2.37 IPS
Image Segmentation (HP) 100%667
10.8 IPS
Image Segmentation (Q)98%332
5.40 IPS
Image Segmentation (Q)99%954
15.5 IPS
Image Segmentation (Q) 99%1235
20.0 IPS
Pose Estimation (SP)100%632
0.74 IPS
Pose Estimation (SP)100%997
1.16 IPS
Pose Estimation (SP) 100%948
1.11 IPS
Pose Estimation (HP)100%649
0.76 IPS
Pose Estimation (HP)100%753
0.88 IPS
Pose Estimation (HP) 100%957
1.12 IPS
Pose Estimation (Q)96%611
0.72 IPS
Pose Estimation (Q)94%2459
2.88 IPS
Pose Estimation (Q) 96%2538
2.97 IPS
Object Detection (SP)100%369
29.3 IPS
Object Detection (SP)100%489
38.8 IPS
Object Detection (SP) 100%497
39.5 IPS
Object Detection (HP)100%378
30.0 IPS
Object Detection (HP)100%122
9.68 IPS
Object Detection (HP) 100%525
41.7 IPS
Object Detection (Q)85%286
23.0 IPS
Object Detection (Q)86%1114
89.5 IPS
Object Detection (Q) 88%1168
93.6 IPS
Face Detection (SP)100%771
9.16 IPS
Face Detection (SP)100%1086
12.9 IPS
Face Detection (SP) 100%1619
19.2 IPS
Face Detection (HP)100%870
10.3 IPS
Face Detection (HP)100%207
2.46 IPS
Face Detection (HP) 100%1632
19.4 IPS
Face Detection (Q)97%719
8.57 IPS
Face Detection (Q)97%2934
35.0 IPS
Face Detection (Q) 100%2980
35.4 IPS
Depth Estimation (SP)100%724
5.58 IPS
Depth Estimation (SP)100%1312
10.1 IPS
Depth Estimation (SP) 100%1241
9.56 IPS
Depth Estimation (HP)99%747
5.76 IPS
Depth Estimation (HP)99%462
3.56 IPS
Depth Estimation (HP) 99%1236
9.52 IPS
Depth Estimation (Q)63%549
5.15 IPS
Depth Estimation (Q)78%2596
20.7 IPS
Depth Estimation (Q) 89%3103
24.1 IPS
Style Transfer (SP)100%1256
1.61 IPS
Style Transfer (SP)100%2473
3.18 IPS
Style Transfer (SP) 100%2786
3.58 IPS
Style Transfer (HP)100%1264
1.63 IPS
Style Transfer (HP)100%1993
2.56 IPS
Style Transfer (HP) 100%2854
3.67 IPS
Style Transfer (Q)98%1454
1.87 IPS
Style Transfer (Q)98%4651
6.00 IPS
Style Transfer (Q) 98%7229
9.32 IPS
Image Super-Resolution (SP)100%362
13.4 IPS
Image Super-Resolution (SP)100%588
21.7 IPS
Image Super-Resolution (SP) 100%599
22.1 IPS
Image Super-Resolution (HP)100%338
12.5 IPS
Image Super-Resolution (HP)100%430
15.9 IPS
Image Super-Resolution (HP) 100%606
22.4 IPS
Image Super-Resolution (Q)97%357
13.2 IPS
Image Super-Resolution (Q)99%876
32.4 IPS
Image Super-Resolution (Q) 99%1505
55.7 IPS
Text Classification (SP)100%612
816.3 IPS
Text Classification (SP)100%297
397.0 IPS
Text Classification (SP) 100%704
939.7 IPS
Text Classification (HP)100%614
819.4 IPS
Text Classification (HP)100%180
240.0 IPS
Text Classification (HP) 100%702
937.4 IPS
Text Classification (Q)92%266
356.9 IPS
Text Classification (Q)97%412
552.4 IPS
Text Classification (Q) 92%1199
1.61 KIPS
Machine Translation (SP)100%819
14.1 IPS
Machine Translation (SP)100%875
15.1 IPS
Machine Translation (SP) 100%1184
20.4 IPS
Machine Translation (HP)100%833
14.3 IPS
Machine Translation (HP)100%267
4.60 IPS
Machine Translation (HP) 100%1210
20.8 IPS
Machine Translation (Q)58%253
5.95 IPS
Machine Translation (Q)65%1085
21.8 IPS
Machine Translation (Q) 100%1206
20.8 IPS

Install

# OpenVino
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
echo "deb https://apt.repos.intel.com/openvino/2025 ubuntu24 main" | sudo tee /etc/apt/sources.list.d/intel-openvino-2025.list
apt update
apt-cache search openvino
apt install openvino
python3 /usr/share/openvino/samples/python/hello_query_device/hello_query_device.py

#Geekbench
mkdir Geekbench
cd Geekbench
wget https://cdn.geekbench.com/GeekbenchAI-1.3.0-Linux.tar.gz
tar xvf GeekbenchAI-1.3.0-Linux.tar.gz
cd GeekbenchAI-1.3.0-Linux/


Check Available frameworks

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --ai-list
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Geekbench AI requires an active internet connection and automatically uploads
benchmark results to the Geekbench Browser.

Framework          | Backend       | Device
 1 TensorFlow Lite |  1 CPU        |  0 Intel(R) N150
 3 ONNX            |  1 CPU        |  0 Intel(R) N150
 4 OpenVINO        |  1 CPU        |  0 Intel(R) N150


help

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --help
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Usage:

  ./banff [ options ]

Options:

  -h, --help                  print this message

AI Benchmark Options:

  --ai                        run the AI benchmark
  --ai-framework [ID]         use AI framework ID
  --ai-backend [ID]           use AI backend ID
  --ai-device [ID]            use AI device ID
  --ai-list                   list available AI settings

If no options are given, the default action is to run the inference benchmark.

example run

root@server5:/storage/apps/Geekbench/GeekbenchAI-1.3.0-Linux# ./banff --ai-framework 1
Geekbench AI 1.3.0 : https://www.geekbench.com/ai/

Geekbench AI requires an active internet connection and automatically uploads
benchmark results to the Geekbench Browser.

AI Information
  Framework                     TensorFlow Lite
  Backend                       CPU
  Device                        Intel(R) N150

System Information
  Operating System              Ubuntu 24.04.2 LTS
  Model                         GMKtec NucBoxG9
  Motherboard                   GMKtec GMKtec
  BIOS                          American Megatrends International, LLC. 5.27

CPU Information
  Name                          Intel(R) N150
  Topology                      1 Processor, 4 Cores
  Identifier                    GenuineIntel Family 6 Model 190 Stepping 0
  Base Frequency                3.60 GHz

Memory Information
  Size                          11.4 GB

  Running Image Classification (SP)
INFO: Initialized TensorFlow Lite runtime.
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Classification (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Classification (Q)
  Running Image Segmentation (SP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Segmentation (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Image Segmentation (Q)
  Running Pose Estimation (SP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Pose Estimation (HP)
INFO: Applying 1 TensorFlow Lite delegate(s) lazily.
  Running Pose Estimation (Q)
...


  • No labels