DRAFT
Intro
App: https://github.com/vladmandic/sdnext/tree/dev Version 2025-07-040 (ipex)
Model: https://huggingface.co/Kwai-Kolors/Kolors
HW: Intel core i7 1355U Intel Xe Graphics iGPU, 96GB DDR5 5600 CL46 RAM
Part 1 - Bookshop
Prompt: photorealistic girl in bookshop choosing the book in romantic stories shelf. smiling
Parameters: Steps: 16| Size: 1024x1024| Seed: 3033194654| CFG scale: 6| Model: Kolors-diffusers| App: SD.Next| Version: 1a3b6e3| Operations: txt2img| Pipeline: KolorsPipeline
Execution: Time: 15m 5.29s | total 906.63 pipeline 869.25 decode 36.00 preview 1.34 | RAM 44.6 GB 47%
| STEPS: 4 | STEPS: 8 | STEPS: 16 | STEPS: 20 | STEPS: 32 | |
|---|---|---|---|---|---|
| CFG0 | |||||
| CFG1 | |||||
| CFG2 | |||||
| CFG3 | |||||
| CFG4 | |||||
| CFG5 | |||||
| CFG6 | |||||
| CFG7 | |||||
| CFG8 | |||||
| CFG9 |
Part 2 - Face and hand
Prompt: Create a close-up photograph of a woman's face and hand, with her hand raised to her chin. She is wearing a white blazer and has a gold ring on her finger. Her nails are neatly manicured and her hair is pulled back into a low bun. She is smiling and has a radiant expression on her face. The background is a plain light gray color. The overall mood of the photo is elegant and sophisticated. The photo should have a soft, natural light and a slight warmth to it. The woman's hair is dark brown and pulled back into a low bun, with a few loose strands framing her face.
Parameters: Steps: 20| Size: 1024x1024| Seed: 3317287141| CFG scale: 6| Model: Kolors-diffusers| App: SD.Next| Version: 1a3b6e3| Operations: txt2img| Pipeline: KolorsPipeline
processing | 12.1/60.8s
Execution: Time: 18m 39.49s | total 1120.96 pipeline 1083.47 decode 35.96 preview 1.47 | RAM 61.37 GB 65%
| 12 | 16 | 20 | 24 | |
|---|---|---|---|---|
| CFG=1 | ||||
| CFG=2 | ||||
| CFG=3 | ||||
| CFG=5 | ||||
| CFG=8 |
Part 3 - Legs and ribbon
Prompt: Generate a photo of a woman's legs, with her feet crossed and wearing white high-heeled shoes with ribbons tied around her ankles. The shoes should have a pointed toe and a stiletto heel. The woman's legs should be smooth and tanned, with a slight sheen to them. The background should be a light gray color. The photo should be taken from a low angle, looking up at the woman's legs. The ribbons should be tied in a bow shape around the ankles. The shoes should have a red sole. The woman's legs should be slightly bent at the knee.
| 12 | 16 | 20 | 24 | |
|---|---|---|---|---|
| CFG=1 | ||||
| CFG=2 | ||||
| CFG=3 | ||||
| CFG=5 | ||||
| CFG=8 |
System Info
app: sdnext updated: 2025-07-04 hash: 1a3b6e3b url: https://github.com/vladmandic/sdnext/tree/dev arch: x86_64 cpu: x86_64 system: Linux release: 6.11.0-28-generic python: 3.12.3 Torch 2.7.1+xpu device: Intel(R) Iris(R) Xe Graphics (iGPU) openvino: 2025.2.0 ram: free:31.06 used:62.91 total:93.97 gpu: total:93.97 xformers: diffusers: 0.35.0.dev0 transformers: 4.53.0 active: cpu dtype: torch.float32 vae: torch.float32 unet: torch.float32 base: Diffusers/Kwai-Kolors/Kolors-diffusers [7e091c7519] refiner: none vae: none te: none unet: none
Model Data
Model: Diffusers/Kwai-Kolors/Kolors-diffusers Type: KolorsPipeline Class: KolorsPipeline Size: 0 bytes Modified: 2025-06-26 22:08:35
SD.Next dev 2025-06-29
Module | Class | Device | DType | Params | Modules | Config |
|---|---|---|---|---|---|---|
vae | AutoencoderKL | cpu | torch.float32 | 83653863 | 243 | FrozenDict({'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'], 'block_out_channels': [128, 256, 512, 512], 'layers_per_block': 2, 'act_fn': 'silu', 'latent_channels': 4, 'norm_num_groups': 32, 'sample_size': 1024, 'scaling_factor': 0.13025, 'shift_factor': None, 'latents_mean': None, 'latents_std': None, 'force_upcast': True, 'use_quant_conv': True, 'use_post_quant_conv': True, 'mid_block_add_attention': True, '_use_default_values': ['mid_block_add_attention', 'latents_mean', 'use_quant_conv', 'use_post_quant_conv', 'latents_std', 'shift_factor', 'force_upcast'], '_class_name': 'AutoencoderKL', '_diffusers_version': '0.18.0.dev0', '_name_or_path': 'models/Diffusers/models--Kwai-Kolors--Kolors-diffusers/snapshots/7e091c75199e910a26cd1b51ed52c28de5db3711/vae'}) |
text_encoder | ChatGLMModel | cpu | torch.float32 | 6243584000 | 316 | ChatGLMConfig { "add_bias_linear": false, "add_qkv_bias": true, "apply_query_key_layer_scaling": true, "apply_residual_connection_post_layernorm": false, "architectures": [ "ChatGLMModel" ], "attention_dropout": 0.0, "attention_softmax_in_fp32": true, "auto_map": { "AutoConfig": "configuration_chatglm.ChatGLMConfig", "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration", "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration", "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration", "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification" }, "bias_dropout_fusion": true, "classifier_dropout": null, "eos_token_id": 2, "ffn_hidden_size": 13696, "fp32_residual_connection": false, "hidden_dropout": 0.0, "hidden_size": 4096, "kv_channels": 128, "layernorm_epsilon": 1e-05, "model_type": "chatglm", "multi_query_attention": true, "multi_query_group_num": 2, "num_attention_heads": 32, "num_layers": 28, "original_rope": true, "pad_token_id": 0, "padded_vocab_size": 65024, "post_layer_norm": true, "pre_seq_len": null, "prefix_projection": false, "quantization_bit": 0, "rmsnorm": true, "seq_length": 32768, "tie_word_embeddings": false, "torch_dtype": "float32", "transformers_version": "4.53.0", "use_cache": true, "vocab_size": 65024 } |
tokenizer | ChatGLMTokenizer | None | None | 0 | 0 | None |
unet | UNet2DConditionModel | cpu | torch.float32 | 2579458820 | 1931 | FrozenDict({'sample_size': 128, 'in_channels': 4, 'out_channels': 4, 'center_input_sample': False, 'flip_sin_to_cos': True, 'freq_shift': 0, 'down_block_types': ['DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D'], 'mid_block_type': 'UNetMidBlock2DCrossAttn', 'up_block_types': ['CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D'], 'only_cross_attention': False, 'block_out_channels': [320, 640, 1280], 'layers_per_block': 2, 'downsample_padding': 1, 'mid_block_scale_factor': 1, 'dropout': 0.0, 'act_fn': 'silu', 'norm_num_groups': 32, 'norm_eps': 1e-05, 'cross_attention_dim': 2048, 'transformer_layers_per_block': [1, 2, 10], 'reverse_transformer_layers_per_block': None, 'encoder_hid_dim': 4096, 'encoder_hid_dim_type': 'text_proj', 'attention_head_dim': [5, 10, 20], 'num_attention_heads': None, 'dual_cross_attention': False, 'use_linear_projection': True, 'class_embed_type': None, 'addition_embed_type': 'text_time', 'addition_time_embed_dim': 256, 'num_class_embeds': None, 'upcast_attention': False, 'resnet_time_scale_shift': 'default', 'resnet_skip_time_act': False, 'resnet_out_scale_factor': 1.0, 'time_embedding_type': 'positional', 'time_embedding_dim': None, 'time_embedding_act_fn': None, 'timestep_post_act': None, 'time_cond_proj_dim': None, 'conv_in_kernel': 3, 'conv_out_kernel': 3, 'projection_class_embeddings_input_dim': 5632, 'attention_type': 'default', 'class_embeddings_concat': False, 'mid_block_only_cross_attention': None, 'cross_attention_norm': None, 'addition_embed_type_num_heads': 64, '_class_name': 'UNet2DConditionModel', '_diffusers_version': '0.27.0.dev0', '_name_or_path': 'models/Diffusers/models--Kwai-Kolors--Kolors-diffusers/snapshots/7e091c75199e910a26cd1b51ed52c28de5db3711/unet'}) |
scheduler | EulerDiscreteScheduler | None | None | 0 | 0 | FrozenDict({'num_train_timesteps': 1100, 'beta_start': 0.00085, 'beta_end': 0.014, 'beta_schedule': 'scaled_linear', 'trained_betas': None, 'prediction_type': 'epsilon', 'interpolation_type': 'linear', 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'sigma_min': None, 'sigma_max': None, 'timestep_spacing': 'leading', 'timestep_type': 'discrete', 'steps_offset': 1, 'rescale_betas_zero_snr': False, 'final_sigmas_type': 'zero', '_use_default_values': ['use_exponential_sigmas', 'final_sigmas_type', 'timestep_type', 'sigma_min', 'sigma_max', 'use_beta_sigmas'], '_class_name': 'EulerDiscreteScheduler', '_diffusers_version': '0.18.0.dev0', 'clip_sample': False, 'clip_sample_range': 1.0, 'dynamic_thresholding_ratio': 0.995, 'sample_max_value': 1.0, 'set_alpha_to_one': False, 'skip_prk_steps': True, 'thresholding': False}) |
image_encoder | NoneType | None | None | 0 | 0 | None |
feature_extractor | NoneType | None | None | 0 | 0 | None |
force_zeros_for_empty_prompt | bool | None | None | 0 | 0 | None |
_name_or_path | str | None | None | 0 | 0 | None |
_class_name | str | None | None | 0 | 0 | None |
_diffusers_version | str | None | None | 0 | 0 | None |